A Numerically Stable Superfast Toeplitz Solver

Ming Gu

Department of Mathematics

University of California, Berkeley

Joint work with J. Xia, Department of Mathematics, Purdue Univ.

- Introduction: Background and Contributions
- Transform of Toeplitz matrix into Cauchy-like matrix
- Semi-separable matrix Construction for Cauchy-like matrix
- Rank-revealing Factorization for Cauchy-like matrix
- Numerical experiments
- Future work

$$T = \begin{pmatrix} t_0 & t_1 & \cdots & t_{n-2} & t_{n-1} \\ t_{-1} & t_0 & t_1 & \ddots & t_{n-2} \\ \vdots & t_{-1} & t_0 & \ddots & \vdots \\ t_{-(n-2)} & \ddots & \ddots & \ddots & t_1 \\ t_{-(n-1)} & t_{-(n-2)} & \cdots & t_{-1} & t_0 \end{pmatrix}$$

- Linear system Tx = b involves O(n) parameters.
- Applications: Computation of splines; Time series analysis; Markov chains; Queuing theory; Signal and image processing.
- First algorithm (Levinson's algorithm) was in 1947.

Introduction: Algorithm History

Methods	Operations	Storage
Fast & Stable	$\geq 20n^2$	$\geq n^2/2$
Fast & Unstable	$\geq 3n^2$	$\geq 4n$
"Superfast" & Stable	$O(n^2 + n\log^2 \epsilon)$	$O(n\log^2 \epsilon)$
Superfast & "Unstable"	$O(n\log^2 n)$	O(n)
Superfast Preconditioner	$O(n\log n)$	O(n)

- Fast: Levinson-Durbin, Trench ...
- Fast stable: Chandrasekaran, Sayed, Gohberg, Kailath, Olshevsky, Gu ...
- Superfast: Martinsson, Tygert, Rokhlin, Ammar, Gragg, Stewart, Codevico, van Barel, Heinig, Chandrasekaran, Gu, Xia, Zhu ...
- Superfast Preconditioners: Chan, Chan, Strang, Yeung, Di Benedetto, Jin, Kailath, Olshevsky, Ku, Kuo, Strela, Tyrtyshnikov, ...

Ideal Algorithms: As fast as possible, as reliable as possible.

Introduction: Novel Features of New Algorithm

$$C = \left(\frac{1}{d_k - f_j}\right)$$
 is Cauchy matrix; $C = \left(\frac{u(k, :) \cdot v(j, :)^*}{d_k - f_j}\right)$ is Cauchy-like.

- Transform Toeplitz matrix into Cauchy-like matrix via FFT (not exactly new);
- Structured matrix algebra of Cauchy-like matrix
 - Compression with Rank-revealing factorization;
 - Hierarchical Semi-separable matrix construction;
- <u>Additional Structures</u>: Submatrices in all steps are Cauchy-like.

Transform Toeplitz Matrix into Cauchy-like (I)

$$Z_{1}T - TZ_{-1}^{T} = h \cdot g^{T},$$

where $Z_{\delta} = \begin{pmatrix} 0 & 0 & 0 & \delta \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}; h \text{ and } g \text{ have } 2 \text{ columns. Let}$
$$Z_{1} = Q_{1}D_{1}Q_{1}^{*}, \quad Z_{-1} = Q_{-1}D_{-1}Q_{-1}^{*}$$

be the eigendecompositions, and let $\widehat{T} = Q_1^* T Q_{-1}$. Then $D \widehat{T} = \widehat{T} D_{-1} - \widehat{h} = \widehat{h} + \widehat{h} - O^* h + \widehat{h} = O^*$

$$D_1\widehat{T} - \widehat{T}D_{-1} = \widehat{h} \cdot \widehat{g}^*, \text{ for } \widehat{h} = Q_1^*h, \ \widehat{g} = Q_{-1}^*g,$$

where

•
$$D_{-1} = \omega D_1$$
 and $D_1 = \operatorname{diag}(1, \omega^2, \dots, \omega^{2(n-1)})$ for $\omega = e^{\frac{\pi i}{n}}$.

• Q_1 and Q_{-1} are known fft matrices.

Transform Toeplitz Matrix into Cauchy-like (II)

$$D_1\widehat{T} - \widehat{T}D_{-1} = \widehat{h}\cdot\widehat{g}^*,$$

where $D_{-1} = \omega D_1$ and $D_1 = \text{diag}(1, \omega^2, \dots, \omega^{2(n-1)})$ for $\omega = e^{\frac{\pi i}{n}}$. \widehat{T} is Cauchy-like with

$$\left(\widehat{T}\right)_{k,j} = \frac{\widehat{h}(k,:) * \widehat{g}(j,:)^*}{d_k - f_j}, \text{ for } d_k = \omega^{2k-2}, f_j = \omega^{2j-1}.$$

• Tx = b can be solved via fft as

$$\widehat{T}\widehat{x} = Q_1^*b, \quad x = Q_{-1}\widehat{x}.$$

• Special Cauchy matrix C satisfies

$$C = \left(\frac{1}{d_k - f_j}\right) = \begin{pmatrix} \frac{1}{1 - \omega} & \frac{1}{1 - \omega^3} & \cdots & \frac{1}{1 - \omega^{2n-1}} \\ \frac{1}{\omega^2 - \omega} & \frac{1}{\omega^2 - \omega^3} & \cdots & \frac{1}{\omega^2 - \omega^{2n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\omega^{2n-2} - \omega} & \frac{1}{\omega^{2n-2} - \omega^3} & \cdots & \frac{1}{\omega^{2n-2} - \omega^{2n-1}} \end{pmatrix}$$

• Approach: Structural Approximation is done on C

Numerical Low-rank Structure of Cauchy Matrix

Off-diagonal numerical ranks for $n = 2569, \tau = 10^{-9}$.

dims	2240×320	1920×640	1600×960	1280×1280	960×1600	640×1920	320×2240
rank	26	28	30	31	30	28	26

- Off-diagonal submatrices have numerical low ranks;
- Higher numerical ranks for middle blocks;
- Representable as Hierarchical Semi-Separable Matrices
- Related work on such matrix structure: Rokhlin, Paige, Chanderasekaran, Gu, Xia ...
- Compression through Rank-Revealing Factorization
- Related work on Rank-Revealing: Deterministic, randomized, RRQR, RRLU, ...

Compression by Rank-Revealing Factorization (II)

Let $C = \left(\frac{1}{d_k - f_j}\right)$ be a Cauchy matrix. Compute permutations

$$\Pi_1 C_{p \times q} \Pi_2^T = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} r \\ p - r \end{pmatrix}$$

to make $|\det(C_{11})|$ sufficiently large:

- Perform r steps of GEPP-like elimination;
- Interchanging rows i and r + j of $C_{p \times q}$ [Miranian and Gu, 2003]

$$\frac{\det(\tilde{C}_{11})}{\det(C_{11})} = \left(C_{21}(C_{11})^{-1}\right)_{k,j} = (N)_{k,j}$$

- Repeat interchanges until $|N|_{\max} \leq 2$;
- Repeat similar interchanges on columns.

Compression by Rank-Revealing Factorization (II)

 $C = \left(\frac{1}{d_k - f_j}\right)$ is Cauchy matrix.

$$\Pi_{1}C_{p\times q}\Pi_{2}^{T} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} r \\ p-r \end{pmatrix} \approx \begin{pmatrix} I \\ N \end{pmatrix} \begin{pmatrix} C_{11} & C_{12} \end{pmatrix} \\ \approx \begin{pmatrix} C_{11} \\ C_{21} \end{pmatrix} \begin{pmatrix} I & \widehat{N} \end{pmatrix}.$$

• Representative cols $\begin{pmatrix} C_{11} \\ C_{21} \end{pmatrix}$, representative rows $\begin{pmatrix} C_{11} & C_{12} \end{pmatrix}$

•
$$N = \left(\frac{z_i w_j}{d_{r+i} - d_j}\right)_{(p-r) \times r}$$
 remains Cauchy-like, so does \widehat{N} ;

- $\|N\|_{\max} \le 2$ and $\|\widehat{N}\|_{\max} \le 2$;
- Every elimination and interchange step costs O(n);
- Full relative accuracy in whole Factorization;
- Approximation accurate for any tolerance.

Hierarchical Semi-Separable Matrix (I)

4-blockrow Partition

Bottom-level Compression

Hierarchical Semi-Separable Matrix (II)

Bottom-level Compression

Merge and Compress

3

Hierarchical Semi-Separable Matrix (III)

HSS Structure

Hierarchical Semi-Separable Matrix (IV)

$$C = \left(\frac{1}{d_k - f_j}\right) = \begin{pmatrix} \frac{1}{1 - \omega} & \frac{1}{1 - \omega^3} & \cdots & \frac{1}{1 - \omega^{2n-1}} \\ \frac{1}{\omega^2 - \omega} & \frac{1}{\omega^2 - \omega^3} & \cdots & \frac{1}{\omega^2 - \omega^{2n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\omega^{2n-2} - \omega} & \frac{1}{\omega^{2n-2} - \omega^3} & \cdots & \frac{1}{\omega^{2n-2} - \omega^{2n-1}} \end{pmatrix},$$

where $\omega = e^{\frac{\pi i}{n}}$. Compressions on off-diagonals of C.

- There are 2^{k-1} block rows at level k; they are multiples of each other;
- Total cost for $\log n$ levels: $O(nr \log n)$, where r is numerical rank.
- All submatrices from construction are Cauchy-like.
- Computations only depend on *n*.

Off-diag Compression of Cauchy-like
$$\widehat{T}$$

 $\widehat{T} = \left(\frac{\widehat{h}(k, 1:2) * \widehat{g}(j, 1:2)^*}{d_k - f_j}\right)$ and $C = \left(\frac{1}{d_k - f_j}\right)$.

$$C_{p \times q} = \left(\frac{1}{d_i - f_j}\right)_{p \times q} \approx \begin{pmatrix} I \\ N \end{pmatrix} \begin{pmatrix} C_{11} & C_{12} \end{pmatrix} \text{ permutations ignored}$$

$$\widehat{T}_{p \times q} = \left(\frac{\widehat{h}(k, 1:2) * \widehat{g}(j, 1:2)^*}{d_k - f_j}\right)_{p \times q}$$

$$= \operatorname{diag}(\widehat{h}_{:,1}) C_{p \times q} \operatorname{diag}(\widehat{g}_{:,1}^*) + \operatorname{diag}(\widehat{h}_{:,2}) C_{p \times q} \operatorname{diag}(\widehat{g}_{:,2}^*).$$

 \widehat{T} has exactly the same semi-separable structure as C, but up to twice the numerical ranks.

Structured Eliminations in Off-diagonal

A block row of \widehat{T} $\widehat{T}_{1:m,1:n} = \begin{bmatrix} \left(\widehat{T}_{1:r,1:r} & \widehat{T}_{1:r,r+1:m} \\ \widehat{T}_{r+1:m,1:r} & \widehat{T}_{r+1:m,r+1:m} \right) & \left(\widehat{I} \\ \widetilde{N} \right) (\widehat{T}_{1:r,m+1:m+r} & \widehat{T}_{1:r,m+r+1:n}) \end{bmatrix}$ diagonal off-diagonal Introducing zeros into the off-diag (applying $\begin{pmatrix} -\widetilde{N} & I \\ I & 0 \end{pmatrix}$ on the left) $= \begin{bmatrix} \left(\widehat{-N} & I \\ I & 0 \end{pmatrix} \widehat{T}_{1:m,1:n} \\ \left(\widehat{T}_{r+1:m,1:m} - \widetilde{N}\widehat{T}_{1:r,1:m} \\ (\widehat{T}_{1:r,1:r} & \widehat{T}_{1:r,r+1:m}) \end{pmatrix} & \left(\begin{pmatrix} 0 & 0 \\ \widehat{T}_{1:r,m+1:m+r} & \widehat{T}_{1:r,m+r+1:n} \end{pmatrix} \right)$

Factorization Preserves Cauchy-like Structures

Let the displacement equations for \tilde{N} and $\widehat{T}_{1:r,1:m}$ be

$$\operatorname{diag}(D_2)\tilde{N} - \tilde{N}\operatorname{diag}(D_1) = u_2 w^T,$$

$$\operatorname{diag}(D_1)\widehat{T}_{1:r,1:m} - \widehat{T}_{1:r,1:m}\operatorname{diag}(F) = u_1 v^T,$$

Then $\tilde{N}\hat{T}_{1:r,1:m}$ satisfies

$$\operatorname{diag}(D_2)(\tilde{N}\widehat{T}_{1:r,1:m}) - (\tilde{N}\widehat{T}_{1:r,1:m})\operatorname{diag}(F) = (u_2 \ Nu_1) \left(\begin{array}{c} w^T \widehat{T}_{1:r,1:m} \\ v^T \end{array}\right)$$

Similar displacement equation exists for $\begin{pmatrix} \widehat{T}_{r+1:m,1:m} - \widetilde{N}\widehat{T}_{1:r,1:m} \\ (\widehat{T}_{1:r,1:r} \ \widehat{T}_{1:r,r+1:m}) \end{pmatrix}$.

Numerical Experiments (I)

T: random; relative tolerance $\tau = 10^{-9}$

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$	$2^8 \times 80$	$2^9 \times 80$
HSS	1.44e6	3.63e6	8.02 <i>e</i> 6	1.75e7	3.59e7	7.34e7	1.49e8	2.98e8
HSS /1000 <i>n</i>	4.50	5.67	6.27	6.84	7.01	7.17	7.08	7.28

Structure construction flops

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$	$2^8 \times 80$	$2^9 \times 80$
HSS	1.46e7	3.96e7	9.19e7	2.07e8	4.30e8	8.93e8	1.83e9	3.68e9
HSS /10000 <i>n</i>	4.56	6.19	7.18	8.08	8.40	8.72	8.93	8.98

Solution flops. The HSS version ignores Cauchy-like structure for now

Numerical Experiments: Mildly Ill-conditioned

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$	$2^8 \times 80$
$\kappa_2(T)$	2.05e6	3.11 <i>e</i> 6	5.32e6	3.02e7	1.40e9	5.79 <i>e</i> 9	
Soln accuracy	3.03e - 14	5.82e - 14	1.24e - 11	2.45e - 11	1.49e - 10	2.99e - 10	5.98e - 10
# of it. ref. steps	1	1	1	1	1	1	1
New accuracy	2.38e - 16	3.32e - 16	5.05e - 16	6.84e - 16	9.83e - 16	1.40e - 15	1.94e - 15

Condition number and accuracy $\frac{||Tx-b||_2}{|||T||x|+|b|||_2}$

Numerical Experiments: More Ill-Conditioned

T: generated with $1 + \operatorname{randn}(n, 1) \times 10^{-9}$; relative tolerance $\tau = 10^{-16}$

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$
$\kappa_2(T)$	1.99e12	1.42e13	1.17e13	2.25e13	2.59e13	8.87 <i>e</i> 13
Soln accuracy	3.05e - 14	5.77e - 14	1.24e - 11	2.45e - 11	1.49e - 10	2.99e - 10
# of it. ref. steps	1	1	1	1	1	2
New accuracy	2.38e - 16	3.36e - 16	5.00e - 16	8.74e - 16	2.12e - 15	7.35e - 15

T: generated with $1 + \operatorname{randn}(n, 1) \times 10^{-15}$; relative tolerance $\tau = 10^{-16}$

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$
$\kappa_2(T)$	1.29e19	1.46e20	5.01e19	4.89e19	3.56e20	6.89e20
Soln accuracy	1.33e - 14	4.04e - 14	1.15e - 12	1.99e - 11	8.08e - 11	1.01e - 10
# of it. ref. steps	1	1	1	3	3	1
New accuracy	5.33e - 16	3.07e - 15	7.86e - 13	7.29e - 13	3.79e - 12	4.83e - 11

Numerical Experiments: Prolate Matrices

T: Prolate matrix, generated with $\frac{\sin(2k\omega\pi)}{k\pi}$, $\omega = 0.25$; relative $\tau = 10^{-16}$

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$
$\kappa_2(T)$	8.76e17	3.23e17	2.87e18	9.60e17	1.04e18	
Soln accuracy	2.17e - 15	4.17e - 15	6.54e - 12	1.12e - 11	5.95e - 11	8.32e - 11
# of it. ref. steps	1	1	1	1	1	1
New accuracy	3.98e - 16	4.42e - 16	1.95e - 16	1.29e - 15	2.639e - 12	8.22e - 11
($ Tx-b _2$					

Condition number and accuracy $\frac{||1|^2}{||1|^2} \frac{||1|^2}{||1|^2}$

Numerical Experiments: Highly Ill-conditioned

T generated by (RBF with uniform mesh) $\phi(x;\alpha,h) = \operatorname{sech}(\frac{\alpha}{h}x), \alpha = \frac{1}{16}, \ \kappa_{\infty}(T) = \frac{1}{4}\exp(\frac{\pi^2}{2\alpha}) = 4.88 \times 10^{33}$

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$
Factorization	2.85e6	7.70e6	1.76e7	3.87e7	8.15e7	1.66e8
Solution	3.79e7	1.19e8	2.89e8	6.80 <i>e</i> 8	1.49e9	3.08e9

Flop counts for structure construction and system solution, $\tau = 10^{-16}$

n	$2^2 \times 80$	$2^3 \times 80$	$2^4 \times 80$	$2^5 \times 80$	$2^6 \times 80$	$2^7 \times 80$
Soln accuracy	2.82e - 16	1.97e - 16	7.43e - 12	8.82e - 12	8.35e - 12	4.35e - 11
# of it. ref. steps			1	1	1	1
New accuracy			3.24e - 16	3.10e - 16	3.81e - 15	1.57e - 15
A (Ax-b	1 11	Cı.	• , , •	C	,

Accuracy $\left(\frac{||A| - b||}{||A||x| + |b|||}\right)$ and the accuracy after iterative refinement

Concluding Remarks

- Structured rank-revealing LU
- All compressions and factorizations in terms of Cauchy-like blocks
- (Theoretical) worst-case element growth factor = $O(n^{O(\log r)})$.
- More improvements in the works.
- Toeplitz least squares problems to be done
- Similar schemes for block Toeplitz/Toeplitz-like problems